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ABSTRACT

When a spherical or cylindrical gas cloud expands into vacuum, the

resultant flow becomes asymptotically self-similar and independent of

the original cloud diameter. An analytic solution for the asymptotic

density profiles, given by Mirels and Mullen [h is re-examined and a new

solution proposed, which gives better agrcement with numerical computations.

Sane applications of the asymptotic solutions are discussed.
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1. INTRODUCTION

The investigations reported here were initiated by a paper "Trans-
,

lational Equilibration of Wires Exploded in Vacua," by 0. H. Zinke et al [1]

The authors of this paper made use of an unsteady spherical expansion of

ionized gas in order to infer the temperature of the gas from the

characteristics of the expansion. The method described by Zinke can be

a powerful tool, provided that the unsteady flow resulting from an expanding

gas cloud is understood theoretically. It is believed that the theoretical

solution presented here straightens out some discrepancies observed by

Zinke. Further remarks on this are given in section 5. The solution

for the unsteady cylindrical expansion can also be applied to a related

problem, the expansion of a hypersonic jet into vacuum.

In the above mentioned and other cases, the main interest is in the

asymptotic flow field after long times. For large times the density

distribution of the expanding gas cloud approaches an asymptotic similarity

form, which is independent of the original diameter of the cloud.

It can be shown, however, that the shape of the asymptotic density

profile depends on the initial density distribution of the gas before

expansion. In the following an attempt is made to derive approximate

solutions for the asymptotic density profiles for the case that the initial

density distribution is uniform. Expansions with plane, cylindrical and

spherical symmetry will be considermd.

Nwnbers in brackets denote references listed on page 25.
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2. ASYMPTOTIC NATURE OF THE FLOW

In the following it is assumed that the flow is isentropic and that

the gas can be treated as a continuum; i.e., the mean free path is very

small compared with the initial diameter of the gas cloud. Then the

equations of motion for flows of cylindrical (a = 1) or spherical (a = 2)

symmetry are respectively:

+ Fu + a0(la)

(G/po) = (51po)Y (1c)

pm and po are taken as initial density and pressure if the density is

initially uniform, or as the initial values at r = 0 if the density is not

uniform. It is assumed that the gas is at rest initially and inclosed

within a cylinder or sphere of radius R.

For the following we introduce nondimensional quantities:

P u r L t 11 (2)PO ao Ro =Ro

where ac is the sound speed of the quiescent gas and found by

&2= 20 (3)
P0

With these nondimensional quantities the equations of motion are:

at r ra

,

For the case that the density is initially uniform, the boundary conditions

are:



at t =O; 0< r < : p =, u =0

< r: p =0 (5)

at t L 0, r = 0: u = 0

For the case that a = 0, the Equations (4) together with boundary conditions

(5) describe the one-dimensional (plane) expansion of a slab of gas

extending either from r = -1 to r = +1 with r = 0 a plane of symmetry or

from r = 0 to r = 1 with a fixed wall at r = 0. In a few cases, exact

solutiorsof Equations (4a, 4b) can be obtained. These solutions which we shall

discuss in the next paragraph, will serve as a guide to construct

approximate asymptotic solutions for the more general case.

Here we are concerned with the asymptotic nature of the flow after long

times; i.e., for times large compared to R./a,. For times which are large

in this sense, the original gas cloud has expanded many times and the

pressure term py-2 a in Equation (hb) becomes relatively small. After

neglecting the pressure term Equation (4b) is solved by

u = r/t (6)

With the solution (6) for u, Equation (4a) has the solution:

a+l
pt = const f(r/t) (7)

where f(r/t) is ar arbitrary function of the one variable r/t. It can be

seen from Equation (6) and (7) that the flow becomes asymptotically self-

similar; i.e., the density and velocity distributions at different times

are similar and differ only by scaling factors. While this similarity form

of Equations (6) and (7) means a certain simplification of the mathematical

treatment, the problem of finding the particular solution for f(r/t) is still

9
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very difficult for the following reason. Since any solution of the form

(6) and (7) solves the equations of motion asymptotically, any of these

solutions represents a possible asymptotic flow, each one belonging to

different initial conditions. Thus, one has to relate a given initial

density distribution to a corresponding f(r/t) and it seems that this

can be done exactly only by computing the whole flow history from the

beginning of the expansion up to large times where the flow becomes self-

similar. A computation of this sort can be performed numerically, using the

finite step method of characteristics. It must be considered, however,

that any finite step computation may become increasingly inaccurate when

carried out for too many steps, due to the accumulation of errors. The

number of steps necessary in order to reach the asymptotic similarity-

solution must be enormously large. In spite of this, numerical computations

for uniform initial densities and various values of y and a hav been carried

out by several authors [2,3) and it appears that the results of these

computations are surprisingly accuratv.

3. ANALYTICAL SOLUTION

A first attempt toward an analytical solution has been made by irels

and Mullen (4], however the solution does not show satisfactory agreement

with numerical results (2,3).

The solution proposed here is obtained by only slight modification of

the view of Mirels and Mullen (4] but it gives, nevertheless, far better

agreement with numerical resu]ts. The procedure used to derive an analytical

expression for the asymptotic flow consicts in finding a valid generalization

10
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of certain exact solutions. As has been mentioned before, in a few cases

the Equations (4a), (4b) can be solved exactly. These cases are:

1. The one-dimensional (a = O) expansion of an initially uniform

slab of gas.

2. The similarity flows for c = 0, 1, 2. These flows are strictly

self-similar at all times, but the initial density-distribution is not uniform.

The characteristics solution for one-dimensional expansion from uniform

initial conditions (case 1) is given in [5] (Courant and Friedrichs) and

is discussed in greater detail in [6,7]. In the asymptotic limit, this

solution simplifies to:

P t = .A ~ 1  (x'i '(ai= r (N)202(a

u r/t (8b)

where N + 1 and r denotes the gamma-function.

The similarity flows have been investigated in References [8] and [9].

If R(t) is the position of the leadinr edre of the expansion, one can

define a similarity variable

y = r/R(t) (9)

so that the gas is confined in 0 s y S 1.

Assuming for the self-similar flow a form P & R-(y+l)f(y);

V . g(y) and substituting into Equations (Isa, b) one obtains

" R0'+)(l - y 2 )Y- (io)

and dR
dt
u -.y (11
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where R satisfies the differential equation

R1 - R(a+l)(Yl)]2 (12)

The constants of integration are so determined, that for

dt

In the asymptotic limit one finds

1 2
= -ff " t (13)

and Equations (10) and (11) become asymp -'ically:'9
1

Pt o ~cll (Y-1.~)o+l~l - (/= (7-1a)

u = r/t (14b)

A compariscn of Equation (8) and Equation (14) shows that both formulas

are quite similar and of the form:

-y (+1 n (15a)

u = r/t (15b)

where D, V and B are constants. Thus, we assume, in accordance with Mirels

and Mullqn [4], that the asymptotic solution for uniform initial density and

a Y 0 is also of the form (15); so that it remains only to determine the

constants D, V and B. If nne of the three constants is given, say V,

then the other two can be determined from the conditions, that mass and

total energy are conserved. In our nondimensional variables these two condi-

tions can be expressed as:

12
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Vt Y
pr dr 1 (+6)

0

P- u2 r" dr = +1 )0 2 -Y-F( 7)
0

Equation (16) equates the mass of the expanded gas to the mass at t = 0

and Equation (17) does the same for the energy. Note, that for t - the

thermal energy vanishes so that only the integral over the kinetic energy

density p/2 u2 is taken at the left side of Equation (17), while for t 0

the kinetic energy is zero and the thermal energy per unit mass is:

ao2

CvTo = T "
r

Introducing the new variable y =- and inserting (15a, b) into (16) and (17)

gives:

Dva + l  (1 - y2)B 0  y = ,i (18)
0

DVO+ 3 (1)

(1 -1y +2dy 2 1 (19)

The integrals in Equations (18) and (19) can be transformed into

Eulerian integrals of the first kind and expressed in terms of gamma

functions. It is, e.g., r (B+l).( !
F1  _ B r(Balr y a( 2 (20)

o ~r(B+1++1)O 2"

Solving Equation (18) and (19) for B and D one obtains:

BL i r+1 (21)

13
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r(B+l + )-- 2 2 (22)
o(~) ,7l

Now only one constant, V, remains to be determined and at this point the

present analysis differs from Mirels and Mullen [4]. From Equation (15a)

it can be seen, that V is the velocity of the leading edge of the

expansion (in units of ao ).

Now Mirels and Mullen maintain that for uniform initial density the

velocity of the leading edge should be the sane as for one-dimensional flow.,

2
and therefore V = -2 regardless of the value of a. In other words, the

geometry, whether spherical or cylindrical, does not influence the leading

edge velocity. The arguments given in favor of this are difficult and not

fully convincing, but even if they were true they would not demand for V

value of-. It is understood that Equation (15a) can be only an

approximate formula which must not reflect every detail of an exact solution.

It could be, that a minute fraction of the total mass "escapes" with the
2

leading edge velocity - and that the bulk of the remaining mass expands

with an "effective" leading edge velocity less than that. In order to have

the best approximation, valid for the bulk of the mass, it would then be

advisable to pick a smaller value for V. This is also suggested by

Equation (14a) for the similarity flow.

Here one observes that the geometry does have an influence on the

1
leading edge velocity expressed by the geometrical factor 7 . If the

geometrical factor 1 has an influence in the case of similarity flow,

it is reasonable to assme that it has an analogous influence in the case of

uniform initial density. This would suggest:

1~4
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1 2
y-1, (23)

for both similarity and uniform initial density flow.

A more rigorous derivation of (23) is given in Appendix A.

With (23) inserted into (21) and (22) the constants B and D are:

B = (24)

r(B+) + a'+
2/ -L)V,- (v-1l)\0+ll 2___(25)_

(cTr Y'l 2~.....J. f(B+l) rl("+')(5

and from Equation (15a),

Pt D [1 - 1/ (-I )] (26)

For a -- 0 Equation (8a) is recovered from Equation (26); i.e.,

Equation (26) is exact for a = 0. For a / 0 the formula (26) is different

from Mirels and Mullen's, who obtain larger values for the exponent B and

the factor D as a result of the larger V values they assumed. In fact,

for a a 1 the exponentsB obtained by Mirels and Mullen are even larger than

the exponent for similarity flow, which is - (Equation l4a). A consequence

of this is that the resultant density distribution is less full than the

corresponding distribution for similarity flow. This is an odd result,

considering that the uniform density profile is fuller initially and one

ought to expect that it also remains fuller than the similarity profile

after. expansion. The exponents obtained by Mirels and Mullen are so large

(e.g. for a = 2, y 7/5; B = 8 instead B I following from Equation 24 )

15
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that they essentially cut off the density profile at a distance inside of

the leading edge which is Lantamount to our supposition that only a

minute fraction of the mass actually achieves a velocity close to that of

the leading edge. In other words, the large values of B tend to partly

compensate for the prohibitively large leading edge velocity assumed by

Mirels and Mullen.

The values here observed for B (Equation 24) are always smaller and

therefore the density profiles fuller, than for the corresponding similarity

flow.

Apparently the formula (26) for the density profile becomes nonsensical

for B < 0, or

1 a+l
771 < 2(27)yl<2

Now, it is interesting to note that inequality (27) describes just those cases

which are physically meaningless. To see this, we recall that y 
=

where N is the number of internal degrees of freedom of the gas. Therefore,
1 N
1 N. On the other hand (o+l) is the number of dimensions of the space

into which the gas expands. If this is (a+l) = n, then inequality (27) states:

N < n, which obviously cannot happen, since even a hypothetical gas must

have at least as many internal as external degrees of freedam.

The density factor D of Equation (25) has a simple physical meaning:

it gives, apart from the time factor t +l , the density at the origin r = 0.

The factor D is plotted in Figure 1 and Figure 2 for a = 1, 2 versus y.

For comparison, the corresponding curves obtained b yMirels and Mullen [4)

16
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and the results of ..umerical computations by Greifinger [2] are plotted

in the same diagram. Also the curve for a = 0 is shown in Figure 1. For

this case the results of Mirels and Mullen [4], Greifinger [2] and the

present analysis agree with each other and the exact solution. For

a = 1, 2 the results of the present analysis are in very good agreement

with the numerical data [2].

Another check against numerical results is given in Figure 3, which

shows the density profile for a = 1, y = 5/3 in comparison with the results

of Mirels and Mullen [4] and numerical data computed at NRL [3]. All

profiles are normalized by dividing through the density at r = 0. Again,

the agreement between the present analysis and the numerical computation is very

good. In Figure 2 the values for D according to Equation (24) are plotted

only for y : 5/3. For larger y-values the exponent B (Equation 24) becomes

negative and the formula (26) is no longer applicable. One might suspect

that the approximate solution (Equation 26) becomes less accurate on

approaching y = 5/3.

4. LATERAL EXPANSION OF A HYPERSONIC JET

BOUNDED BY VACUUM

If the lateral flow velocity u of the expanding Jet is small compared

with its axial velocity Vo, then the equations of motion for steady flow

reduce to Equations (1) with t replaced by T , where i is the axial

distance from the nozzle. Using the nondimensional quantities defined

in Equation (2) and defining a nondimensional axial distance x , one

19
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has to replace t in Equations (4) by = Thus, the solution for
Vo  M"

the density distribution of the jet is obtained from Equation (26) for

a land substituting 2 for t. This solution is valid for Mo >> 1.

5. MEASUREMENT OF PLASMA TEMPERATURE

In their paper, "Translational Equilibration of Wires Exploded in

Vacua," [1] the authors describe a method for measuring the temperature of

ionized gas with the aid of a drift tube. The method, which is described

in detail in [1], is essentially as follows: The plasma source, in this

case an exploding wire, is located at one end of a long evacuated drift

tube, while an electrode is placed at its opposite end. It is assumed

that the wire is heated uniformly by a short current pulse. After the

short heating period the gaseous, ionized wire material starts to expand

without being heated subsequently. The ion flux, after reaching the electrode,

gives rise to a time dependent current in the electrode circuit which can

be observed. From the observed current distribution the temperature of

the original plasma cloud can be inferred.

In evaluating the experimental data Zinke et al. [i assumed, the

plasma would expand like a collision-free gas; i.e.. according to free

molecular flow. On the basis of this assumption, it was impossible tofit

the theoretical prediction to the experimental data unless a hypothetical

"containment-time" was introduced. In other word:,, thce nhape of the observed

current-time distribution was quite different from the 11-hLye of any of the

possible theontical distributionis. The theoretical current distributions

for 'ree molecular flow are given by

21
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( Kexp (- (28)

where t is the time elapsed from the explosion of the wire, r the distance

between the explosion and the electrode, T the temperature of the original

plasma cloud and K a constant related to the total number of ions.

The distributions Equation (28) form a two-parameter class of curves

with parameters K and T. None of these curves fit the experimental data.

A satisfactory fit could be achieved only after introducing a third

parameter, H, the "containment-time." Assuming the plasma did not start

to expand at time t = 0, i.e., immediately after heating, but at a later

time, t = H, the distribution Equation (28) would be altered to:

=(E K m r (29)
(EH) 4  exp 2T (i-H)2 "

With properly chosen K, T, H, Zinke could obtain a reasonable fit to all

experimental data. However, the physical meaning of the containment-time,

H, remained completely unclear. Obviously, the assumption of free molecular

flow is not correct for the high initial densities encountered in the wire

explosion. In continuum expansion the energy of the gas molecules is

redistributed as a result of collisions. This may significantly change

the flow and the current distribution observed at the electrode of the

drift tube. The theoretical current distribution for continuum flow is

r
proportional to Pu p V v with p given by Equation (26) and a =2. Thus:

t

. (y 1) 2
KTri(L.L2 .a1 (30)

22

' .I

6 ''



Here r is the distance between the electrode and the plasma source

(exploding wire) and 1 the time elapsed from the explosion.

When K and ao were chosen properly, a good fit could be obtained to the

experimental data of Zinke without the assumption of a containment-time.

From a. the temperature can be determined by: a02  = y T
m

The values for the temperature obtained from this fit were about

l0C OK. These values are more likely correct than those obtained by Zinke

of about 106 'K.

APPENDIX A

Introducing a new dependent variable p* by

* C(31)

and substituting (31) into Equations (4a, b) gives the following set of

equations for p*:

t_ + p*[ + C = 0 (32a)
At r 771 I r I

a+ u LU+ ( 0 +1 )P*(Y-')(a+l)+C ; P*
Tt- (3 0b)

Let us now consider the factor ( L ) in the last term of Equation

(32a). This factor i: exactly zpro i'or the similarity solution. a can be

seen from Equation (ii).

For the ease: of uniform initial density thi- f-',,ctc- bccem s tv-ymptotically
zero, since u - r. It is also zern near tho center r 0, which follows

t

from the boundary condition. (5) mccordinr to which u c. r + r +

We therefore assume, that the averorpe effect of h las t term, of Equation (Oca)

is small and to a certain approximation it can be ncrlcteri altogether.

23
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With the further transformations:

U* u t*u*= U (3

(y* - 2) = (y-2)(o+l) + a

we obtain by substituting into (32a,b):

R! + = o (34a)at* ar

au* + u* u* + (P*)(y*-2) _ - 0 (34b)
t* 6r 6r

From (34a,b) we observe, that p*, u* satisfy the equations of motion (4a,b)

for a = 0 with y* replacing y. p*, u* also satisfy the same boundary

conditions as p, u for the case of uniform initial density. The asymptotic

solution, therefore, can be obtained from (8a,b) with p, u, t, y replaced

by p*, u*, t*, y*; i.e., 3-*

p*t* - r\,2 2 y*- (35a)

u* = r/t* . (35b)

Taking the (a+l) power of Equation (35a) and substitution of (31) and

(33) into (35a,b) gives:

;+l
pt + = ont - )2 -  " , (36a)

Pt const L - 2 t

u = r/t . (36b)

The constant in Equation (36a) can now be re-adjusted so as to satisfy the

mass conservation. The solution (36a) then is identical with Equation (26).

24
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